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Abstract—Variational algorithm using Quantum Approximate
Optimization Algorithm (QAOA) can solve the prime fac-
torization problem in near-term noisy quantum computers.
Conventional Variational Quantum Factoring (VQF) requires
a large number of 2-qubit gates (especially for factoring a large
number) resulting in deep circuits. The output quality of the
deep quantum circuit is degraded due to errors limiting the
computational power of quantum computing. In this paper, we
explore various transformations to optimize the QAOA circuit
for integer factorization. We propose two criteria to select the
optimal quantum circuit that can improve the noise resiliency
of VQF.

I. INTRODUCTION

Quantum computing is prophesized to solve integer factor-
ization which is the basis of the RivestShamirAdleman (RSA)
based cryptosystem. Quantum factoring using Shor’s algo-
rithm has demonstrated the potential to factor large integers in
polynomial time compared to classical computers which take
exponential time. However, it requires an excessive number
of qubits to factor even trivial numbers e.g. 21 precluding
its application in today’s Noisy-Intermediate-Scale-Quantum
(NISQ) computers that possess a limited number of qubits [1].
To make the best use of the limited quantum resources, an
alternative approach is to transform the factoring problem into
a combinatorial optimization problem which is then solved
using a hybrid quantum-classical solver known as Variational
Quantum Factoring (VQF) [2].

The abstract flow of VQF is shown in Fig. 1. In the
first stage, we formulate the factoring problem as a cost
function with binary variables. With the Boolean variable
properties, we perform classical pre-processing to reduce
the number of variables in the cost function which is then
encoded into a cost Hamiltonian such that its ground state
encodes the optimal solution to the optimization problem. In
the next stage, the cost Hamiltonian is decomposed into a
Parameterized Quantum Circuit (PQC) (i.e. a quantum circuit
consisting of parameterized gates). In the final stage, the
quantum circuit is passed to a hybrid quantum-classical solver
to optimize its parameters iteratively to minimize the cost
function. The hybrid optimization is terminated when a pre-
defined optimization goal is satisfied. In this work, we use
the Quantum Approximate Optimization Algorithm (QAOA),

one of the promising hybrid quantum-classical solver, to solve
the optimization problem [3].

In the NISQ era quantum computers, the performance of
VQF can be affected by the quantum noises [4], [5] e.g.,
gate error and decoherence. Gate error is the imprecision of
applying a quantum gate whereas decoherence noise is rooted
in the qubits’ loss of information due to the interaction with
the environment. Quantum noises can deviate the modulation
of a quantum state from its original planned path thus
affecting the VQF performance. The impact of decoherence
error on similar quantum optimization problems have already
been well-studied and known to be solely dependent on the
circuit depth [4]. Therefore, we focus on gate error on VQF.

Factoring a large number may require high-depth QAOA
(i.e., higher p) to improve the VQF performance. However,
we show that the noise resiliency of VQF drops at higher
p-levels due to noise. Therefore, it is important to study
the behavior of VQF under noise and develop techniques
to improve resiliency. We have noted that a cost Hamilto-
nian can be mathematically transformed into different forms,
which are then decomposed to different quantum circuits. The
transformed quantum circuit flavors can offer a varied degree
of noise resilience.

To our best knowledge, this is the first work to quantify
the impact of noise on VQF and improve its performance
using various transformations. We make the following con-
tributions:
(a) Study the impact of gate error on VQF: We show that
gate error significantly impacts the VQF performance.
(b) Analyze the impact of transformations on VQF: We
study the noise resilience of VQF with the resulting quantum
circuits derived from 4 transformations.
(c) Evaluation of integers: We study 2 realistic integers with
prime factors and 2 synthetic integers with non-prime factors.
(d) Propose a novel VQF implementation flow: We inte-
grate our criterion of selecting the quantum circuit into the
workflow of VQF to improve its performance.

Paper organization: Section II introduces background on
QAOA and conversion of factoring problem into optimization
problem. Section III explains the process and performance
analysis of various transformations. Section VI presents future
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Fig. 1: The proposed flow of VQF (the grey boxes are the added stages to the conventional VQF.)

work and limitations. Conclusions are drawn in Section V.

II. PRELIMINARIES

A. Quantum Approximate Optimization Algorithm

The optimal solution of a combinatorial optimization prob-
lem is obtained from a finite set of solutions. The unknowns
are on an N-bit binary strings: Z = {z1, z2, ...zn }, where
zi ∈ {0, 1}. The goal of this optimization problem is to
find a string to either maximize or minimize (depending on
the problem) the cost function C(Z). In VQF, we seek to
minimize C(Z) which consists of m clauses, each describing
a constraint to the optimization problem. It is denoted as:

C(Z) =
m∑
i=1

Cm(Z).

QAOA is a promising algorithm to tackle the combinatorial
optimization problem in the NISQ era due to its inherent error
resiliency. An overview of a p-level QAOA is shown in Fig. 2.
The initial state is set by applying a Hadamard gate to each of
the qubits, s.t. ψI = |+〉⊗n, where n is the number of qubits,
|+〉 = 1√

2
(|0〉 + |1〉) and ⊗ stands for the tensor product.

Each unknown in the cost function is mapped to a qubit.
For gate-based quantum computers, the cost Hamiltonian
and mixing Hamiltonian are decomposed into the quantum
circuits with the native gates of the target hardware, which
are applied repeatedly for p times to generate the output
state, ψF . We explain the decomposition technique in the
next section. For VQF, the rotational parameters are optimized
iteratively by minimizing the expectation value of ψF via
classical optimization. A lower expectation value indicates
that ψF is closer to the objective state, and the solution binary
string can be retrieved with a higher probability by repetitive
measurement. It is well-known that the QAOA performance
improves with higher p in the noiseless environment. How-
ever, we show that in reality, the performance may degrade
with an increasing p due to quantum noises.

B. Factoring as Binary Optimization

It has been proved that a factorization problem can be
mapped into an optimization problem [6]. For demonstration
purposes, we adopt the idea from [7] that focuses on a specific
factorization, where both of the multiplier’s bit length are the
same e.g., factoring of 143 = 11 ∗ 13 to describe the VQF
procedure. Since 143 is an odd number, the least significant
bit (LSB) for both multipliers are 1. The multiplication table
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Fig. 2: Schematic diagram of p-level QAOA.

is constructed as shown in Fig. 3. Here p and q are the
multipliers represented in binary; pi and zij stands for the
i-th bit of p and the carry from the j-th bit to the i-th bit,
respectively; The last row is 143 in binary. Given the previous
assumptions of this factorization, the unknown variables in
this multiplication tables are: p2, p1, q2, q1 and the carry
bits.

The equations that describe the multiplication relations
column-wise are written as:

p1 + q1 = 1 + 2z12 (1)
p2 + p1q1 + q2 + z12 = 1 + 2z23 + 4z24 (2)

... (3)
1 + z56 + z46 = 0 + 2z67 (4)

z67 + z57 = 1 (5)
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Fig. 3: Multiplication table of 143 in binary representation.

we simplify the above equations based on the Boolean
properties to reduce the number of qubits. This process
is denoted as the classical pre-processing. For example, in



equation (1), we note that z12 has to be 0 given that the
maximum result on the left-hand side, p1+q1, is 2. Similarly,
we can simplify the rest of the equations. The equations after
the classical pre-processing are shown below:

p1 + q1 − 1 = 0 (6)
p2 + q2 − 1 = 0 (7)

p2q1 + p1q2 − 1 = 0 (8)

The corresponding cost function, denoted as Cf , is con-
structed by the cumulative square sum of the above equations.
i.e.:

Cf =(p1 + q1 − 1)2 + (p2 + q2 − 1)2+

(p2q1 + p1q2 − 1)2
(9)

C. Mapping Cost Function into Cost Hamiltonian

To construct the Hamiltonian model, each of the variables
(zi) in the binary string is mapped into a quantum spin, σzi ,
where σzi ∈ {−1,+1}, such that: ẑi =

1−σz
i

2 .
Thus, the cost Hamiltonian for factoring 143 shown in

equation (9) is constructed as:

Hc =(p̂1 + q̂1 − 1)2 + (p̂2 + q̂2 − 1)2+

(p̂2q̂1 + p̂1q̂2 − 1)2
(10)

III. TRANSFORMATION SCHEMES AND THEIR
PERFORMANCE ANALYSIS

A. Transformation Schemes

There are multiple schemes to mathematically transform
the cost Hamiltonian in equation (10) into other forms to
optimize the resulting quantum circuit. In the following sub-
sections, we introduce the 4 transformations namely, DIRECT
[2], SCHALLER [7], GROBNER [8] and SIM-GROBNER
(proposed in this paper).

1) DIRECT: This transformation is carried out by directly
expanding the original cost Hamiltonian (equation (10)) with-
out any mathematical transformation. After the expansion, the
cost Hamiltonian (for factoring 143) is shown in equation
(11):

Hc =3− p̂1 − p̂2 − q̂1 − q̂2 + ˆ2p1q̂1 − p̂2q̂1+
ˆ2p2q̂2 + 2p̂1p̂2q̂1q̂2

(11)

The qubit interaction terms such as, σz1σ
z
2 denotes σz1 ⊗ σz2

and so on. The circuit components are shown in Fig. 4. After
decomposing the cost Hamiltonian into a quantum circuit
with the basis gates e.g., CNOT, RX, RZ, and RY (native to
IBM quantum computers), it can be noted that the maximum
number of qubit interaction for DIRECT is 4, which requires
6 CNOT gates for construction.

2) SCHALLER: The maximum number of qubit interaction
can be reduced to 3 using Schaller and Schützhold trans-
formation that constructs equation like AB + S = 0 into
a cost Hamiltonian of 2[ 12 (A + B − 1

2 ) + S]2 − 1
8 . For

factoring 143, (p̂2q̂1 + p̂1p̂2 − 1)2 can be transformed into
2[ 12 (p̂1+ q̂2−

1
2 )+ p̂2q̂1−1]2− 1

8 . It can be noted in equation

(12) that the maximum number of qubit interaction is reduced
to 3:

Hc =5− 3p̂1 − p̂2 − q̂1 + 2p̂1q̂1 − 3p̂2q̂1+

2p̂1p̂2q̂1 − 3q̂2 + p̂1q̂2 + 2p̂2q̂2 + 2p̂2q̂1p̂2
(12)

3) GROBNER: This transformation reduces the maximum
level of qubit interaction from 4 to 2 by replacing a multipli-
cation term of two variables with a new variable and adding
a corresponding penalty term, (piqj − wij)+ to Hc. Hence,
this transformation decreases the level of qubit interaction
at the cost of increased number of qubits (i.e. by adding
extra unknown variables to the cost Hamiltonian). The penalty
term, (piqj − wij)

+, can be obtained via Gröbner bases
computation:

(piqj − wij)+ =a(piwij − wij) + b(qiwij − wij)+
c(piqj − wij)

(13)

where a, b, c ∈ R such that −a − b − c > 0, −b − c > 0,
−a− c > 0 and c > 0. In this case, we take a, b and c to be
−2, −2 and 1, respectively.

4) SIM-GROBNER: We propose SIM-GROBNER trans-
formation which also uses a replacement strategy but with a
simplified penalty compared to GROBNER i.e.:

(piqj − wij)+ = (piqj − wij)2 (14)

This scheme can reduce the maximum number of qubit
interaction from 4 to 3 but will also increase the number of
qubits.

B. Experimental Setup

1) Studied Cases: The analysis is performed for factoring
143 and 291311 together with two other random cost Hamil-
tonians. Ideally, we should analyze the trends for a larger set
of realistic numbers that are used in cryptography. However,
such numbers may require a large number of qubits that
cannot be supported by the present NISQ computers. Since
our objective is to enhance the resilience of VQF to solve
the factoring problem, we note that other random numbers
(with non-prime factors) can also be used for the study.
Since there are only limited mathematical forms for the cost
function of VQF, the selected 4 studied cases are able to
cover most of their characteristics. Therefore, the findings
from these studied cases can be applied to factor realistic
and large numbers when NISQ computers with a higher
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Fig. 4: The circuit decomposition mapping.



number of qubits are available. The random cost Hamiltonians
are chosen such that their minimum values are equal to 0
(similar to the cost Hamiltonians for actual prime factorization
problems).

2) Modeled Quantum Computer: To focus solely on the
impact of various transformation techniques, we ignore the
coupling constraints that are hardware-specific and prohibit
some qubit to interact directly (and may require SWAP gates).
We consider the implementation on a 16-qubit fully connected
quantum computer such that two-qubit interactions (CNOT)
is allowed between any two qubits. This quantum computer is
modeled using IBM Qiskit [9]. Without the loss of generality,
we assume that each qubit has identical quality metrics. This
further reduces the influence of the different configurations
of quantum computer hardware. The values of gate errors
are obtained by averaging the real gate error metrics across
all qubits that are reported in the IBM 16-qubit Melbourne
quantum computer on a randomly chosen day. Lastly, we
scale the noise levels (from 0-100%) obtained from the real
quantum hardware to evaluate the sensitivity of VQF to
noise. The implication of above assumptions are discussed
in Section IV.

3) Choice of Classical Optimizer: A variety of classical
optimizers can be used with QAOA. The performance of local
optimizers may greatly depend on the distribution of initial
points. In addition, they may get trapped in a local optimum
easily. To reduce the influence of the above factors, we use
a global optimizer namely, differential evolution to train the
QAOA circuit implemented from the Scipy-optimize library
[10]. We constrain the search space to γi ∈ [0, 2π] and βi ∈
[0, 2π] to boost the optimization speed.

C. Obtaining Expectation Value

The expectation value can be obtained by: 〈E〉 =
〈ψF |Hc |ψF 〉. However, a n-qubit QAOA corresponds to an
n × n matrix for Hc. Therefore, the size of Hc increases
exponentially as the number of qubit increases requiring an
enormous amount of computing resources. We adopted the
idea from [5] that uses Monte-Carlo simulations to obtain an
approximated expectation value classically by averaging M
measurements:

Ẽ =
1

M

M∑
j=1

C(Zj) (15)

where Zj is the binary strings of the j-th measurement of the
ψF in the computational basis. Ideally, the approximation gets
better with larger M value. Empirically, we have discovered
that a relatively large number of measurements is sufficient
for a decent approximation but it is also related to the number
of qubit.

D. Circuit-level Comparison

It is known that the resiliency of a quantum circuit de-
pends on the number of qubits, noisy gate operations and
circuit depth. Therefore, it is important to compare these key
characteristics for various transformations as shown in Fig.5.

For each number, GROBNER and SIM-GROBNER use
the same (and higher) number of qubits than DIRECT and

(a) (b)

(c) (d)

Factor 143

qubit single cnot depth
0

10

20

30

40

50

nu
m

be
r

DIRECT
SCHALLER
GROBNER
SIM GROBNER

Factor 291311

qubit single cnot depth
0

20

40

60

80

100

nu
m

be
r

DIRECT
SCHALLER
GROBNER
SIM GROBNER

RANDOM Hamiltonian #1

qubit single cnot depth
0

10

20

30

40

50

nu
m

be
r

DIRECT
SCHALLER
GROBNER
SIM GROBNER

RANDOM Hamiltonian #2

qubit single cnot depth
0

10

20

30

40

50

nu
m

be
r

DIRECT
SCHALLER
GROBNER
SIM GROBNER

Fig. 5: Comparison of the number of qubits, single gates,
CNOT gates and circuit depth for VQF at p=1 for factoriza-
tion of, (a) 143; (b) 291311; (c) random Hamiltonian #1; (d)
random Hamiltonian #2.

SCHALLER. This is due to the introduction of new variables
into circuits to reduce the order of qubit interaction. In
terms of the number of single-qubit gates, we did not note
a consistent trend among the transformations. For the first
three numbers (i.e. 143, 291311 and random Hamiltonian
#1), DIRECT has a significantly higher number of CNOT
operations. For example, it has 60% more CNOT gates than
GROBNER for the factorization of 291311. The reason is 4-
qubit interactions for these three cases each of which costs
as many as 6 CNOT gates (shown in Fig.4). For the random
Hamiltonian #2, DIRECT’s highest qubit interaction is 3.
Therefore, applying SCHALLER transformation results in
the same circuit architecture and applying SIM-GROBNER
becomes unnecessary since it increases both the number of
qubits, CNOT gates and circuit depth. This study indicates
two things: first, the transformations offer a trade-off space
among the number of qubits, circuit depth and CNOT gates,
and, second, the choice of appropriate transformation is
dependent on the target integer for factorization (i.e., cost
Hamiltonian).

E. Evaluation Metric

To quantify the performance gain of VQF under noise
across various factoring problems, we define the normalized
residual performance gain as Gi,p (denoted as NRPG in
figures), where i and p is the noise level and QAOA level,
respectively. It is calculated as:

Gi,p =
mi,p − rand
mi=0,p − rand

(16)

where mi, p is the probability of measuring the objective state,
which is the solution to a factoring problem, and rand is the
probability of obtaining the correct solution from VQF by
random selection.

For example, if the number of variables to be solved is 4,
then the number of possible solutions is 24 = 16. If there are
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decoherence noise (solid lines) for factoring 291311 using,
(a) DIRECT and (b) SCHALLER transformation.

2 correct solutions, then rand will be 2/16. The numerator
term mi,p − rand can be thought of as the performance
gain by applying VQF. In absence of noise (i.e. i = 0),
VQF can achieve full performance (i.e. Gi,p = 100%).
When the noise is large enough and mi,p ≈ rand, then
Gi,p ≈ 0% and applying VQF is equivalent to randomly
guessing the answer. The motivation of integrating rand
into the calculation is to incorporate the sizes of instances
into consideration, because the magnitude of mi,p can be
problem instance dependent. For example, a mi,p with 15%
can be a very small performance gain for a small problem
instance, where rand is 12.5%, but can also be a decent
solution for a large problem instance, where rand is only
0.5% in comparison. Therefore, by integrating rand into
the calculation, the evaluation will be more objective across
different problem instances.

F. Impact of Gate Noise

1) Gate Noise vs Decoherence: We first compare the im-
pact of gate noise and decoherence noise on the performance
of VQF (Fig. 6). To solely examine the impact of gate
noise, we mask decoherence noise and vice versa. For both
factorization, the performance loss of VQF due to gate noise
is much larger than that of decoherence noise. Therefore,
the selection of quantum circuits for VQF should prioritize
mitigating the impact of gate noise.

2) Empirical Observation: In Fig. 7, we demonstrate the
error resiliency of various transformations for 4 problem in-
stances. Besides the analysis of solution space, we again note
that the error resiliency of VQF is significantly impacted by
the noise level for all the 4 transformations. The performance
degradation increases with the noise level. Additionally, the
QAOA level (p) can also impact the VQF performance. For
a fixed noise level, increasing p leads to more degradation
due to noise. For example, for the GROBNER in Fig. 7(a),
Gi=0.4,p decreases from 63.37% to 15.21% when p increases
from 1 to 4.

Transformations can also be a factor to determine the error
resiliency of VQF under noise. For the first three numbers
(i.e. 143, 291311 and Hamiltonian #1), GROBNER provides
relatively the best error resiliency; SIM-GROBNER is slightly
better than the SCHALLER in some instances; DIRECT is
the worst among all the schemes. We take factorization of
143 as an example: when i = 0.4 and p = 2, the nor-
malized performance gain for GROBNER, SIM-GROBNER,

SCHALLER and DIRECT is: 47.26%, 38.79%, 17.91% and
11.13%. However, for the last problem instance (Hamiltonian
#2), SIM-GROBNER has the lowest Gi,j among all the
transformation schemes, especially for p = 3 and 4. The
reason can be inferred by comparing the circuit architectures
in Fig. 5(d) i.e., SIM-GROBNER has significantly a larger
number of CNOT gates and circuit depth than other schemes.

G. Selection of Resilient Quantum Circuit

We can draw two conclusions from the previous obser-
vation: (a) the number of CNOT gates can greatly impact
the noise resiliency of VQF. As indicated in Section III.D,
DIRECT has more number of CNOT gates than GROBNER,
SIM-GROBNER and SCHALLER for the first three problem
instances. Thus, it has the worst error resiliency. For the
last problem instance, SIM-GROBNER possess the largest
number of CNOT gates. Correspondingly, it has the worst
error resiliency among the transformation schemes; (b) the
number of CNOT gate per qubit also impacts the noise
resiliency of VQF. In Fig. 5(a)-(c), it can be noted that GROB-
NER, SCHALLER and SIM-GROBNER have a similar num-
ber of CNOT gates. However, since GROBNER and SIM-
GROBNER have more qubits, their number of CNOT gates
per qubit is lower than that of the SCHALLER. Therefore,
GROBNER and SIM-GROBNER outperform SCHALLER
in terms of the noise resiliency. This conclusion is further
validated in the last problem instance, where GROBNER has
more number of CNOT than DIRECT and SCHALLER, but
their noise resiliency for this instance are about the same.
This is due to higher number of qubits that can offset the
more number of CNOT gates in GROBNER. However, one
noteworthy tradeoff is that GROBNER and SIM-GROBER
increase the number of qubits and may not be suitable for
quantum computers with small number of qubits.

Based on the above conclusions, we note that it is of
great significance to choose an appropriate quantum circuit
to improve the performance of VQF and that the selection
can be done classically with very little timing overhead. The
integration of the circuit selection stage into the workflow of
VQF can be seen in Fig. 1.

IV. DISCUSSIONS AND LIMITATIONS

A. Future Transformation Techniques

We have shown that gate noise is the dominant source that
can impact the resiliency of VQF. We have identified two
factors to alleviate this issue namely, usage of less number of
CNOT gates or CNOT gates per qubit. Future work targeting
new transformations guided by these two criteria can enhance
the VQF resilience further.

B. Considerations to Coupling Constraints

We did not consider the coupling constraints of the quan-
tum computers for the simplicity of analysis. Coupling con-
straints mandate two-qubit gate interaction between qubits
that are connected physically. If not, one (or both) of the
qubit(s) should be swapped to another qubit pair using the
SWAP gates, with each consisting of 3 CNOT gates. In
other words, deploying a quantum circuit on a real quantum



DIRECT SCHALLER GROBNER SIM-GROB

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

SCHALLER
normalized probability vs noise level

p=1
p=2
p=3
p=4

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

DIRECT
normalized probability vs noise level

p=1
p=2
p=3
p=4

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

GROBNER
normalized probability vs noise level

p=1
p=2
p=3
p=4

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

NAIVE
normalized probability vs noise level

p=1
p=2
p=3
p=4

Factor 143 Factor 143 Factor 143 Factor 143

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

SCHALLER
normalized probability vs noise level

p=1
p=2
p=3
p=4

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

DIRECT
normalized probability vs noise level

p=1
p=2
p=3
p=4

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

GROBNER
normalized probability vs noise level

p=1
p=2
p=3
p=4

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

NAIVE
normalized probability vs noise level

p=1
p=2
p=3
p=4

RANDOM #1 RANDOM #1 RANDOM #1 RANDOM #1

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

NIAVE
normalized probability vs noise level

p=1
p=2
p=3
p=4

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

DIRECT
normalized probability vs noise level

p=1
p=2
p=3
p=4

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1
no

rm
 p

ro
ba

bi
lit

y

GROBNER
normalized probability vs noise level

p=1
p=2
p=3
p=4

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

SCHALLER
normalized probability vs noise level

p=1
p=2
p=3
p=4

RANDOM #2 RANDOM #2 RANDOM #2 RANDOM #2

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

NAIVE
normalized probability vs noise level

p=1
p=2
p=3
p=4

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

no
rm

 p
ro

ba
bi

lit
y

GROBNER
normalized probability vs noise level

p=1
p=2
p=3
p=4

Factor 291311 Factor 291311 Factor 291311 Factor 291311

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

N
R

PG

DIRECT Factor 291311
Gate Error vs Decoherence Error

p=1
p=2
p=3
p=4

Factor 291311

0  0.2 0.4 0.6 0.8 1  
noise level

0

0.2

0.4

0.6

0.8

1

N
R

PG

SCHAller Factor 291311
Gate Error vs Decoherence Error

p=1
p=2
p=3
p=4

Factor 291311

(a)

(b)

(c)

(d)

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

N
RP

G

Fig. 7: Comparison of transformation schemes under the impact of various noise levels for factoring, (a) 143; (b) 291311;
(c) random Hamiltonian #1; (d) random Hamiltonian #2.

computer often will increase the number of CNOT gates and
circuit depth due to the coupling constraints.

The coupling constraints can be easily included in our
proposed VQF flow by introducing the necessary SWAP
gates. However, the developed selection criteria will remain
valid for these quantum circuits.

C. Validation with quantum hardware

We considered the qubit quality metrics (e.g., gate error)
for each qubit the same whereas they differ in reality. This
assumption may have an effect in practice where one trans-
formation can be benefited by better qubit allocation than
others. However, our noise values are calibrated with real
quantum hardware making the conclusions realistic. In the
future work, we will implement the proposed VQF flow on
real quantum computers and integrate more hardware-specific
considerations to improve the accuracy of the analysis.

V. CONCLUSIONS

We analyzed the impact of noise on VQF for factoring
both realistic and synthetic integers. We also explored 4
transformation techniques and their noise sensitivities (specif-
ically to gate noise). We found that the quantum circuit
structure resulted from transformation techniques can impact
the performance of VQF i.e., the number of CNOT gates and

the number of CNOT gates per qubit. Lastly, we improved
the noise resiliency of VQF by integrating our findings into
its workflow.
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